A, šta je uopšte taj Higs (Higsova čestica)?
Mnogo pre početka potrage za Higsovom česticom bilo je neophodno napraviti modele i simulacije njenih osobina. Higsova čestica je jedna posebna vrsta čestica, tzv. bozon, koji ne izgrađuje materiju (kao što to rade npr. leptoni i kvarkovi) već više “liči” na prenosioce interakcija – bozone (tj. foton, W ili Z bozone i gluone).
Sva materija koji vidimo oko nas izgrađena je od malog broja različitih gradivnih jedinica, a te gradivne jedinice nazivaju se elementarne čestice. Tokom istorije materija je deljena na sve sitnije i sitnije sastavne delove. Nekada se smatralo da je atom najmanja nedeljiva “cigla” materije, ali pokazano je da se on sastoji od elektrona i jezgra, kasnije je utvrđeno da se jezgro sastoji od protona i neutrona, a još kasnije da se protoni i neutroni sastoje od kvarkova. Prema pomenutom Standardnom modelu sve elementarne čestice dele se na leptone i kvarkove (koji zajedno izgrađuju materiju) i bozone koji prenose interakcije između čestica materije i drže ih na okupu (ili ih odbijaju). Dok su čestice materije intuitivno prihvatljivije i poznatije prenosioci interakcije često umeju da zbune (osim fotona, možda).
Da bi razumeli ulogu bozona setimo se da u prirodi postoje četiri osnovne sile (elektro-magnetna, slaba, jaka i gravitaciona). Gravitaciona sila je nešto drugačija i, za sada se ne može opisati istom teorijom kao ostale tri, ali one su slične i mogu se opisati na sličan način. Svakoj od ove tri osnovne sile odgovara neki prenosilac interakcije, tj. neki bozon. Tako je posrednik u prenosu elektro-magnetne sile foton, slabu silu prenose W i Z bozoni a jaku silu prenose gluoni.
Svi ovi bozoni zajedno sa 6 leptona i 6 kvarkova čine Standardni model elementarnih čestica i izgrađuju svet u kome živimo. Sve ove čestice su odavno otkrivene, otkrića su saglasna sa teorijskim predviđanjima i sve lepo funkcioniše ali standardnom modelu nedostaje samo jedna “sitnica”.
Ta sitnica je problem postojanja mase. Standardni model lepo opisuje čestice ali ne objašnjava zbog čega one imaju masu i na koji način te je dobijaju. Složićete se da ova “sitnica” uopšte nije sitnica već vrlo bitan problem koji je neophodno rešiti. Kada je 1994. godine potvrđeno otkriće poslednje čestice standardnog modela, top kvarka, sa masom od 176 GeV, postalo je jasno da standardni model skoro besprekorno funkcioniše ali nedostajal mu je još jedna karika do kompletne teorije. Ta “karika” je Higsova čestica, koja je odgovorna za postojanje mase svih ostalih čestica.
Postojanje mase čestica u standardnom modelu objašnjeno je tzv. Higsovim mehanizmom. Ovaj mehanizam predložio je Filip Anderson 1962. godine na nerelativističkom modelu a relativističku dopunu dao je Piter Higs 1964. godine. Nezavisno od njega u proleće 1963. godine do sličnog rezultata došle su i dve grupe fizičara Robert Brout i Francois Englert, i Gerald Guralnik, C. R. Hagen i Tom Kibble.
Prema Higsovom mehanizmu pretpostavlja da ceo prostor ispunjava jedno neprekidno i za nas nevidljivo polje, tzv. Higsovo polje. Ovo polje je prostire se ravnomerno u prostori i vremenu. Sve čestice kreću se kroz ovo polje i interaguju sa njim. One čestice koje jače interaguju sa Higsovim poljem osećaju “veći otpor” polja i na taj način postaju masivnije. Pogledajte slikovito objašnjenje Higsovog mehanizma.
Da bi detektovali ovo Higsovo polje neophodno je izazvati neku “silovitu” promenu u njemu i onda detektovati talase koji se kroz to polje prostiru. U nekom klasičnom smislu analogija bi mogla da bude bacanje kamena na mirnu površinu vode, gde nam je dobro poznato da će pad kamena dovesti do pojave mehaničkih talasa koji se prostiru površinom i koje je lako detektovati. Za razliku od kamena i vodenih talasa talase u Higsovom polju je mnogo teže izazvati i još teže detektovati.
Za izazivanje talasa na Higsovom polju mogu se iskoristiti sudari protona na visokim energijama (to radi LHC). Prilikom sudara dva protona može da nastane talas koji je kasnije moguće detektovati, ali tu postoji nekoliko problema. Prvi je taj što prilikom svakog sudara ne nastaju odgovarajući talasi već se to dešava samo jednom u više milijardi sudara; a drugi problem je izuzetno slab intenzitet tog talasa. Prilikom sudara dva protona nastaje samo “jedan” kvant talasa Higsovog polja, a taj kvant naziva se Higsova čestica i nju je potrebno detektovati!
Higsovu česticu, koja je nastala na ovaj način, nije moguće “videti” i detektovati ali ona se (srećom) brzo raspada kroz jedan od pet već pomenutih kanala. Detektovanjem krajnjih produkata ovih kanala raspada detektuje se postojanje čestice. Detektovanje samo jednog ovakvog raspada, tj. događaja, je komplikovan proces jer je karakterističan događaj teško izdvojiti iz šuma slučajnih događaja koji prate svaki sudar. Zbog toga je neophodno izvršiti ogroman broj sudara i detektovati mnogo sličnih događaja. Slučajno događaji se u ogomnom broju ponavljanja gube, ali oni pravi se ponavljaju na identičan način i njihov rezultat na detektorima raste. Ovo povećanje broja događaja dovodi do različitih “pikova” na grafikonima koji ukazuju da na tim mestima postoji “nešto” – ako se ti događaji ponavljaju, i njihov broj raste, za pomenute kanale raspada Higsa oni dokazuju postojanje Higsove čestice i Higsovog polja, tj. Higsovog mehanizma.
Danas, kada smo prvi put “videli” Higsovu česticu po prvi put u istoriji čovečanstva možemo da kažemo da znamo kako čestice, posebno one koje prenose interakcije sa konačnim dometom, dobijaju masu!